4 research outputs found

    Centralized Airflow Control to Reduce Output Power Variation in a Complex OWC Ocean Energy Network

    Get PDF
    A centralized airflow control scheme for a complex ocean energy network (OEN) is proposed in this paper to reduce the output power variation (OPV). The OEN is an integrated network of multiple oscillating water columns (OWCs) that are located at different geographical sites connected to a common electrical grid. The complexity of the OWC-OEN increases manifolds due to the integration of several OWCs and design of controllers become very challenging task. So, the centralized airflow control scheme is designed in two stages. In control stage-1, a proportional-integral- (PI-) type controller is designed to provide a common reference command to control stage-2. In control stage-2, the antiwindup PID controllers are implemented for the airflow control of all the OWCs simultaneously. In order to tune the large number of control parameters of this complex system, a fitness function based on integral squared error (ISE) is minimized using the widely adopted particle swarm optimization (PSO) technique. Next, the simulation results were obtained with random wave profiles created using the Joint North Sea Wave Project (JONSWAP) irregular wave model. The OPV of the proposed OWC-OEN was reduced significantly as compared to the individual OWC. It was further observed that the OPV of the proposed scheme was lower than that achieved with uncontrolled and MPPT controlled OWC-OEN. The effect of communication delay on the OPV of the proposed OWC-OEN scheme was also investigated with the proposed controller, which was found to be robust for a delay up to 100 ms.This work was supported in part by the Basque Government through project IT1207-19 and MCIU/MINECO through RTI2018-094902-B-C21/RTI2018-094902-B-C22 (MCIU/AEI/FEDER, UE)

    A Theoretical Terahertz Metamaterial Absorber Structure with a High Quality Factor Using Two Circular Ring Resonators for Biomedical Sensing

    No full text
    Metamaterial absorbers, on account of their inherent property of electromagnetic radiation absorption, have become a center of attraction for many researchers in recent times. This paper proposes a unique design of a terahertz metamaterial absorber that can be used to sense biomedical samples. The proposed design consists of two identical circular ring resonators (CRRs) made of aluminum on top of a gallium arsenide (GaAs) substrate. On account of its high field confinement in the sensing regime, a near-to-perfect absorption rate of 99.50% is achieved at a frequency of 2.64 THz, along with a large quality factor (Q-Factor) of 44. The design is highly sensitive to the refractive index changes in the encompassing medium. Hence, the proposed absorber can be used as a refractive index sensor exhibiting a reasonable sensitivity of 1500 GHz/RIU and a figure of merit (FoM) of 25. The refractive index range has been varied in the range of 1.34 to 1.39. As many biomedical samples, including cancerous cells, reside within this range, the proposed sensor can be used for biomedical sensing applications

    A Three-Phase Resonant Boost Inverter Fed Brushless DC Motor Drive for Electric Vehicles

    No full text
    The present article proposes a three-phase resonant boost inverter (TPRBI) to feed a permanent magnet brushless DC (PMBLDC) motor at the requested torque with low ripples due to the sinusoidal current injected into the PMBLDC motor. PMBLDC motors have the highest torque-to-weight ratio compared to other motors and are the best choice for electric vehicle applications. Conventionally, these motors are driven by voltage source inverters (VSI) with trapezoidal current injection, introducing unwanted torque ripples. Moreover, due to the buck operation of VSI, an extra power conversion stage is required to elevate the battery voltage level to desired DC-link voltage. This extra stage increases the number of components used, complexity of control and decreases the efficiency and reliability of the overall system. TPRBI injects sinusoidal current in the PMBLDC motor in the proposed method, thus minimizing the torque ripples. The proposed inverter also has an inherent voltage boost characteristic, thus eliminating the extra power conversion stage. The single-stage conversion from DC to boosted sinusoidal AC enhances the system reliability and efficiency and minimizes the cost and weight of the system. A MATLAB/Simulink model is presented along with simulation results and mathematical validation. A comparative evaluation of the proposed system with the conventional VSI-fed PMBLDC motor is presented in terms of induced torque ripples
    corecore